
OMMProtocol Documentation
Release 0.1.13+0.g8a5e9e4.dirty

Jaime RGP, InsiliChem

Sep 08, 2020

For users

1 Installation & Updates 3

2 Quick usage 5

3 OMMProtocol input files 9

4 OpenMM forcefields 15

5 Software architecture 19

6 Get help 21

7 Citation 23

i

ii

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

A command line application to launch molecular dynamics simulations with OpenMM

• No coding required - just a YAML input file!

• Smart support for different input file formats:

– Topology: PDB/PDBx, Mol2, Amber’s PRMTOP, Charmm’s PSF, Gromacs’ TOP, Desmond’s DMS

– Positions: PDB, COOR, INPCRD, CRD, GRO, DCD

– Velocities: PDB, VEL

– Box vectors: XSC, CSV, PDB, GRO, INPCRD, DCD

– A fallback method is implemented and will attempt to load everything else that might be supported
by ParmEd.

• Choose your preferred trajectory format (PDB, PDBx, DCD, HDF5, NETCDF, MDCRD) and checkpoints
(Amber’s, CHARMM’s, OpenMM XML states).

• Live report of simulation progress, with estimated ETA and speed.

• Checkpoint every n steps. Also, emergency rescue files are created if an error occurs.

• Autochunk the trajectories for easy handling.

For users 1

https://travis-ci.org/insilichem/ommprotocol
https://ci.appveyor.com/project/jaimergp/ommprotocol
https://anaconda.org/InsiliChem/ommprotocol
https://chemrxiv.org/articles/OMMProtocol_A_Command_Line_Application_to_Launch_Molecular_Dynamics_Simulations_with_OpenMM/7059263
http://parmed.github.io/ParmEd/html/index.html

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

2 For users

CHAPTER 1

Installation & Updates

1.1 How to install OMMProtocol

1.1.1 First method: Standalone installer

If you haven’t used Anaconda or Miniconda before (a Python distribution with a cool package manager), your best bet
is to simply download the installer for the latest release, which includes everything you need.

1. Go to the OMMProtocol releases page and download the latest installer for your platform.

2. Run the installer and follow the instructions!

a. In Linux, open the terminal and run bash ~/Downloads/ommprotocol*.sh or whatever path
the file got saved.

b. In Windows, double click on the downloaded ommprotocol*.exe.

3. The installer will create, by default, a new directory called ommprotocol in your $HOME. Un-
der ommprotocol/bin``(Linux) or ``ommprotocol/Scripts (Windows) you will find the
ommprotocol executable.

1.1.2 Second method: Conda package

OMMProtocol is also distributed as a separate conda package. If you already have Anaconda/Miniconda installed,
you won’t probably want to download a separate Python distribution. In that case, skip to step 2.

1. Download and install Miniconda, a tiny Python distribution with a cool package manager and installer. Check
its webpage for more info.

For Linux:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3*.sh

(continues on next page)

3

https://github.com/insilichem/ommprotocol/releases/latest
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

(continued from previous page)

For Windows, download the EXE installer:
https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe

2. Install it in the default environment. . .

conda install -c omnia -c insilichem ommprotocol

3. . . . or use a new, separate environment (optional):

conda create -n ommprotocol -c omnia -c insilichem ommprotocol
conda activate ommprotocol

4. If everything is OK, these sould run correctly.

ommprotocol -h
ommanalyze -h

1.1.3 Third method: From source

If there’s no package for your platform, install the dependencies with conda and then install ommprotocol from
pip or source.

conda create -n ommprotocol -c omnia openmm ruamel_yaml parmed openmoltools mdtraj
→˓netcdf4 jinja2 pdbfixer
conda activate ommprotocol
stable version
pip install ommprotocol
dev version
pip install https://github.com/insilichem/ommprotocol/archive/master.zip

1.2 Updating OMMProtocol

Depending on the installation method, updating OMMProtocol involves different steps.

1.2.1 First method: Standalone installer

Just download the installer for the new version and run it. In Linux/MacOS you will need to append the -u flag to the
installer. In Windows, just follow the wizard.

1.2.2 Second method: Conda package

Within the activated environment, run conda update -c insilichem -c omnia ommprotocol. That’s
it.

1.2.3 Third method: From source

Simply pass the -U flag to pip: pip install -U ommprotocol or, for development version, pip install
-U https://github.com/insilichem/ommprotocol/archive/master.zip.

4 Chapter 1. Installation & Updates

https://github.com/insilichem/ommprotocol/releases

CHAPTER 2

Quick usage

2.1 OMMProtocol

Once installed (Installation & Updates), first thing to do is creating the input file (OMMProtocol input files) for your
simulation. This task usually involve two different steps:

1. Getting the structural data (topology, coordinates)

2. Specifying the simulation details:

• Forcefield parameters

• Solvation conditions: explicit, implicit, no solvent?

• Simulation conditions: temperature, pressure, NPT, NVT?

• Technical details: how to compute non-bonded interactions, whether to use periodic boundary condi-
tions, whether to constrain some specific types of bonds, the integration method and timestep. . .

These details are probably out of the scope of this documentation, and the reader is encouraged to read specific tutorials
about this, such as:

• An Introduction to Molecular Dynamics Simulations using AMBER

• NAMD tutorials

• GROMACS tutorials

With a correctly formed YAML input file named, for example, simulation.yaml, the user can now run:

ommprotocol simulation.yaml

If the structure is correctly formed and the forcefield parameters are well defined, the screen will now display a status
like this:

The generated files will be written to the directory specified in the outputpath key (or, if omitted, to the same di-
rectory simulation.yaml is in), with the following name format: [globalname]_[stagename].[extension],

5

http://ambermd.org/tutorials/basic/tutorial0/index.htm
http://www.ks.uiuc.edu/Training/Tutorials/namd-index.html
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

where globalname is the value of the global name key in the input file, and stagename is the value of the stage
key in each stage.

Most of this files can be opened during the simulation. That way you can check the progress of the trajectory in
viewers like VMD, PyMol or UCSF Chimera. Since .log files are created by default with some metadata about the
simulation (temperature, potential energy, volume. . .), they are a convenient way of checking if everything is working
OK. For example, the energies and temperatures should be more or less constant. To do that, a helper utility called
ommanalyze is included, which is able to produce interactive plots of such properties:

2.2 OMMAnalyze

ommanalyze is a small collection of analysis utilities for topologies and trajectories. Currently, it offers three
subcommands:

• ommanalyze log: Plot *.log reports generated by OMMProtocol (energies, temperature, volume. . .).

• ommanalyze rmsd: Performs RMSD analysis on trajectories. Produces plots and plain-text file. Since it
uses MDTraj iterload, it does not load all the files at once and allows you to analyze long trajectories with
small memory footprint.

• ommanalyze top: Quick summary of any topology supported by MDTraj. Designed to debug subset selec-
tion queries with --subset flag. Check mdinspect (provided by MDTraj) for more advanced debugging.

2.2.1 Examples

> ommanalyze rmsd -t my_topology.prmtop -s 'backbone' my_trajectories*.dcd

0%| | 0/26 [00:00<?, ?file/s]
40%| | 200/500 [00:02<00:03, 77.95frames/s, traj=my_trajectories_01.dcd]

(continues on next page)

6 Chapter 2. Quick usage

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

(continued from previous page)

> ommanalyze top my_topology.prmtop -s 'resname UNK'

Topology my_topology.prmtop

Contents:
- 1 chains
- 39956 residues
- 132199 atoms
- 132463 bonds

Subset `resname UNK` will select 13 atoms.
name element resSeq resName chainID segmentID

14550 H160 H 887 UNK 0
14551 C145 C 887 UNK 0
14552 H159 H 887 UNK 0
14553 C144 C 887 UNK 0
14554 H157 H 887 UNK 0
14555 H158 H 887 UNK 0
14556 N30 N 887 UNK 0
14557 C143 C 887 UNK 0
14558 H156 H 887 UNK 0
14559 C142 C 887 UNK 0
14560 C141 C 887 UNK 0
14561 H154 H 887 UNK 0
14562 H155 H 887 UNK 0
14563 O66 O 887 UNK 0

2.2. OMMAnalyze 7

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

8 Chapter 2. Quick usage

CHAPTER 3

OMMProtocol input files

OMMProtocol is designed with a strong focus on reproducibility. As a result, the input file contains all the necessary
details to run a whole simulation. OMMProtocol input files are written with Jinja-enhanced YAML files and look like
this:

Protocol for implicit solvent (implicit.yaml)

input
topology: example.pdb
forcefield: [amber99sbildn.xml, amber99_obc.xml] # only for PDB

output
project_name: sys
outputpath: output
report: True
report_every: 1000
trajectory: DCD
trajectory_every: 2000
trajectory_new_every: 1e6
restart: rs
restart_every: 1e6
save_state_at_end: True

hardware
platform: CUDA
platform_properties:

Precision: mixed

conditions
integrator: LangevinIntegrator
temperature: 300
friction: 0.1
timestep: 1.0
barostat: False
pressure: 1.01325

(continues on next page)

9

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

(continued from previous page)

barostat_interval: 100
minimization_max_iterations: 1000

OpenMM system options
nonbondedMethod: CutoffNonPeriodic
nonbondedCutoff: 1.0 # nm
constraints: HBonds
rigidWater: True
extra_system_options:

implicitSolvent: GBn2

stages:
- name: implicit

temperature: 300 # K
minimization: True
md_steps: 250e6
trajectory: DCD
trajectory_step: 2000

There’s two main parts in these files:

• Top-level parameters: listed in next section, they are common for all stages

• stages: Contains a list with all the stages to be simulated in the requested order. Each stage can override one
or more global parameter(s), if needed.

3.1 Provided examples

OMMProtocol ships with some ready-to-use example protocols, which can be used as a template to create a custom
one. Most of the time you will only need to change the topology and positions keys, detailed in the next section.
Available examples:

• standard.yaml: The protocol used in most of our solvated protein simulations, such as in [Lur]. It includes a
progressive solvent relaxation step, followed by a simulated annealing from 100 to 300K, ending with a long
production stage.

• standard_jinja.yaml: Same as previous one, but the simulated annealing stages are described with a Jinja loop
for a cleaner result.

• implicit.yaml: Same parameters as standard.yaml, but optimized for implicit solvent conditions in a single
stage (no need for solvent relaxation).

• test.yaml: Protocol meant to debug a problematic simulation (those that end in Particle position is
NaN, for example) by dumping states and trajectories every 10 steps. It runs very slow and consumes lots of
disk space!

• simple.yaml: Toy example to show the simplest protocol implementable in OMMProtocol.

3.1.1 Default behaviour

In principle, OMMProtocol input files can be as simple as:

topology: output.pdb
stages:

(continues on next page)

10 Chapter 3. OMMProtocol input files

https://github.com/insilichem/ommprotocol/tree/master/examples
https://github.com/insilichem/ommprotocol/blob/master/examples/standard.yaml
https://github.com/insilichem/ommprotocol/blob/master/examples/standard_jinja.yaml
https://github.com/insilichem/ommprotocol/blob/master/examples/implicit.yaml
https://github.com/insilichem/ommprotocol/blob/master/examples/test.yaml
https://github.com/insilichem/ommprotocol/blob/master/examples/simple.yaml

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

(continued from previous page)

- minimization: True
steps: 100000

This is possible due to the chosen default values for almost every key. Specific details for each key are provided below,
but globally this results in the following behaviour:

• OMMProtocol will report the simulation progress to the standard output and create an Amber NetCDF check-
point file every 1,000,000 steps. If an error occurs during the simulation, it will attempt to save a OpenMM
XML file with the current state of the simulation, which, if lucky, can be used to restart the simulation or, at
least, to debug the problem that could lead to that error.

• If PDB files are being used as topology sources and no forcefield is provided and, it will default to
amber99sbildn.xml and tip3p.xml.

3.2 Top-level parameters

All the parameters are optional except stated otherwise.

3.2.1 Input options

• topology: Main input file. Should contain, at least, the topology, but it can also contain positions, veloci-
ties, PBC vectors, forcefields. . . Required. Supports PDB/PDBx, Mol2, Amber’s PRMTOP, Charmm’s PSF,
Gromacs’ TOP, Desmond’s DMS.

• positions: File with the initial coordinates of the system. Overrides those in topology, if needed. Required
if the topology does not provide positions. If the file is a trajectory, a frame must be specified with a list: [
path_to_trajectory.dcd, 1044]. Supports PDB, COOR, INPCRD, CRD, GRO, DCD.

• velocities: File containing the initial velocities of this stage. If not set, they will be set to the requested
temperature. Supports PDB, VEL.

• box_vectors: File with replacement periodic box vectors, instead of those in the topology or positions file.
If the file is a trajectory, a frame must be specified with a list: [path_to_trajectory.dcd, 1044].
Supports XSC, CSV, PDB, GRO, INPCRD, DCD.

• checkpoint: Restart simulation from this file. It can provide one or more of the options above. Supports
STATE.XML, RS.

• forcefield: Which forcefields should be used, if not provided in topology. Required for PDB topologies.
More details on OpenMM forcefields.

• charmm_parameters: CHARMM forcefield. Required for PSF topologies.

Since several types of files can provide the same type of data (positions, vectors. . .), there is an established order of
precedence. topology < checkpoint < positions & velocities < box. The only keys out of this
chain are‘‘forcefield‘‘ and charmm_parameters, which are only required for the specified types of topology.

topology <---------| forcefield (PDB only)
^ | charmm_parameters (PSF only)
[checkpoint]
^
positions (required if not provided above), [velocities]
^
[box]

3.2. Top-level parameters 11

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

3.2.2 Output options

• project_name: Name for this simulation. Optional. Defaults to a random 5-character string.

• outputpath: Path to output folder. If relative, it’ll be relative to input file. Optional. Defaults to . (directory
where the input file is located).

• report: True for live report of progress. Defaults to True.

• report_every: Update interval of live progress reports. Defaults to 1000 steps.

• trajectory: Output format of trajectory file, if desired. Defaults to None (no trajectory will be written).

• trajectory_every: Write trajectory every n steps. Defaults to 2000 steps.

• trajectory_new_every: Create a new file for trajectory every n steps. Defaults to 1,000,000 steps.

• restart: Output format for restart/checkpoint files, if desired. Defaults to None (no checkpoint will be
generated).

• restart_every: Write restart format every n steps. Defaults to 1,000,000 steps.

• save_state_at_end: Whether to save the state of the simulation at the end of every stage. Defaults to
True.

• attempt_rescue: Try to dump the simulation state into a file if an exception occurs. Defaults to True.

3.2.3 General conditions of simulation

• minimization: If True, minimize before simulating a MD stage. Defaults to False.

• steps: Number of MD steps to simulate. If 0, no MD will take place. Defaults to 0.

• timestep: Integration timestep, in fs. Defaults to 1.0.

• temperature: In Kelvin. Defaults to 300.

• barostat: True for NPT, False for NVT. Defaults to False.

• pressure: In bar. Only used if barostat is True. Defaults to 1.01325.

• barostat_interval: Update interval of barostat, in steps. Defaults to 25.

• restrained_atoms: Parts of the system that should remain restrained (a
k*((x-x0)^2+(y-y0)^2+(z-z0)^2) force is applied to minimize movement) during the simula-
tion. Supports mdtraj’s DSL queries (like not protein) or a list of 0-based atom indices (like [0, 1,
40, 55, 67]). Default to None (no freezing).

• restraint_strength: If restraints are in use, the strength of the applied force in kJ/mol. Defaults to 5.0.

• distance_restrained_atoms: Pairs of atoms whose distance should remain constant. Must be specified
with a list 2-tuples, with each item being the atom index or a DSL query that returns a single atom. For example,
[[0, 1], [5,2]], [['resid 58 and name OE1', 'resid 43 and name HE1']].

• distance_restraint_length: Equilibrium distance for each pair of
distance_restrained_atoms. A list of target values must be provided, one for each pair. If
only one value is provided, the same will be used for all pairs. It accepts a positive float (ie, 0.3) in nm, or the
keyword initial (to use the starting distance of that pair).

• distance_restraint_strength: Force constant for each restrained pair. A list of target values must
be provided, one for each pair. If only one value is provided, the same will be used for all pairs. It accepts a
positive float (ie, 0.3) in kcal per mole per squared angstrom.

12 Chapter 3. OMMProtocol input files

http://mdtraj.org/latest/atom_selection.html
http://mdtraj.org/latest/atom_selection.html

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

• constrained_atoms: Parts of the system that should remain constrained (no movement at all) during the
simulation. Supports mdtraj’s DSL queries (like not protein) or a list of 0-based atom indices (like [0,
1, 40, 55, 67]). Default to None (no freezing).

• integrator: Which integrator should be used. Langevin by default.

• friction: Friction coefficient for integrator, if needed. In 1/ps. Defaults to 1.0.

• minimization_tolerance: Threshold value minimization should converge to. Defaults to 10 kJ/mole.

• minimization_max_iterations: Limit minimization iterations up to this value. If zero, don’t limit.
Defaults to 10000.

3.2.4 OpenMM system parameters

These parameters directly correspond to those used in OpenMM. Their default values will be inherited as a result. For
example, if the topology chose is PDB, the system will be created out of the forcefield object, whose default
values are stated here. For other topologies, check the loaders here.

Most common parameters are summarized here.

• nonbondedMethod: The method to use for nonbonded interactions. Choose between NoCutoff (default),
CutoffNonPeriodic, CutoffPeriodic, Ewald, PME.

• nonbondedCutoff: The cutoff distance to use for nonbonded interactions, in nm. Defaults to 1.0.

• constraints: Specifies which bonds angles should be implemented with constraints. Choose between None
(default), HBonds, AllBonds, HAngles.

• rigidWater: If True (default), water molecules will be fully rigid regardless of the value passed for the
constraints argument

• removeCMMotion: Whether to remove center of mass motion during simulation. Defaults to True.

• extra_system_options: A sub-dict with additional keywords that might be supported by the .createSys-
tem method of the topology in use. Check the OpenMM docs to know which ones to use.

3.2.5 Hardware options

• platform: Which platform to use: CPU, CUDA, OpenCL. If not set, OpenMM will choose the fastest avail-
able.

• platform_properties: A sub-dict of keyworkds to configure the chosen platform. Check the OpenMM
docs to know the supported values. Please notice all values must be strings, even booleans and ints; as a result,
you should quote the values like this 'true'.

3.2. Top-level parameters 13

http://mdtraj.org/latest/atom_selection.html
http://docs.openmm.org/7.1.0/api-python/generated/simtk.openmm.app.forcefield.ForceField.html#simtk.openmm.app.forcefield.ForceField.createSystem
http://docs.openmm.org/7.1.0/api-python/app.html#loaders-and-setup
http://docs.openmm.org/7.1.0/api-python/app.html#loaders-and-setup
http://docs.openmm.org/7.1.0/api-python/generated/simtk.openmm.openmm.Platform.html#simtk.openmm.openmm.Platform
http://docs.openmm.org/7.1.0/api-python/generated/simtk.openmm.openmm.Platform.html#simtk.openmm.openmm.Platform

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

14 Chapter 3. OMMProtocol input files

CHAPTER 4

OpenMM forcefields

Since OMMProtocol is compatible with a multiple formats thanks to OpenMM itself and other excellent packages
(MDTraj, ParmEd. . .), you can use the forcefield formats defined in other MD suites. Namely, PRMTOP for Amber,
PSF+PAR+STR in CHARMM or TOP in Gromacs. If you are already using some of those packages, you don’t
need to do anything else: just provide the paths in the topology section (CHARMM parameters must be specified in
charmm_parameters).

However, OpenMM does provide its own set of forcefields, converted from the original formats (Amber, Charmm
and others) to its FFXML format. The following section lists all the built in forcefields in OpenMM as of v7.2. The
updated list will be available at the OpenMM repo.

amber14/DNA.OL15.xml
amber14/DNA.bsc1.xml
amber14/RNA.OL3.xml
amber14/lipid17.xml
amber14/protein.ff14SB.xml
amber14/protein.ff15ipq.xml
amber14/spce.xml
amber14/tip3p.xml
amber14/tip3pfb.xml
amber14/tip4pew.xml
amber14/tip4pfb.xml
charmm36/spce.xml
charmm36/tip3p-pme-b.xml
charmm36/tip3p-pme-f.xml
charmm36/tip4p2005.xml
charmm36/tip4pew.xml
charmm36/tip5p.xml
charmm36/tip5pew.xml
charmm36/water.xml
absinth.xml
amber03.xml
amber03_obc.xml
amber10.xml
amber10_obc.xml

(continues on next page)

15

https://github.com/pandegroup/openmm/tree/master/wrappers/python/simtk/openmm/app/data

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

(continued from previous page)

amber14-all
amber96.xml
amber96_obc.xml
amber99Test.xml
amber99_obc.xml
amber99sb.xml
amber99sbildn.xml
amber99sbnmr.xml
amberfb15.xml
amoeba2009.xml
amoeba2009_gk.xml
amoeba2013.xml
amoeba2013_gk.xml
charmm36.xml
charmm_polar_2013.xml
hydrogens.xml
iamoeba.xml
pdbNames.xml
residues.xml
spce.xml
swm4ndp.xml
tip3p.xml
tip3pfb.xml
tip4pew.xml
tip4pfb.xml
tip5p.xml

To use them with a PDB file, just specify them in a list for the forcefield key, like:

topology: some.pdb
forcefield: [amber99sbildn.xml, tip3p.xml]

or, if you prefer this other syntax:

topology: some.pdb
forcefield:
- amber99sbildn.xml
- tip3p.xml

4.1 More forcefields

The OpenMM team is doing a tremendous effort towards the next release, which will include even more force-
fields. You can check the progress here. This will include more builtin forcefields and also a separate package called
openmm-forcefields, developed here. When this is available, it will be shipped with OMMProtocol.

4.2 Custom forcefields

While the best option to generate custom parameters is to use something like AmberTools to create a PRMTOP
topology and use that, there are options to develop custom parameters with OpenMM. Check these links for further
information:

• Creating and Customizing Force Fields in OpenMM (YouTube video).

16 Chapter 4. OpenMM forcefields

https://github.com/choderalab/openmm-forcefields/projects/1
https://github.com/choderalab/openmm-forcefields
https://www.youtube.com/watch?v=xap418xVjNI

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

• openmm-forcefields also features Python converters for Amber & CHARMM forcefields. As a result,
automated tooling for those forcefields can be used and then converted to OpenMM, like antechamber or
cgenff.

• openmoltools (included with OMMProtocol) provides some functions to process and convert forcefields. Specif-
ically, openmoltools.amber.run_antechamber for parameterizing small molecules through Am-
berTools’ antechamber, and openmoltools.utils.create_ffxml_file to convert the result to
OpenMM XML forcefield format.

4.2. Custom forcefields 17

https://github.com/choderalab/openmoltools

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

18 Chapter 4. OpenMM forcefields

CHAPTER 5

Software architecture

OMMProtocol is a glue application, which means that the main business logic resides within the third-party modules it
depends on. Nonetheless, this should not necessarily imply a disorganized architecture. The main codebase is clearly
divided in two categories: input and output handling (io module) and MD settings (md module). A third module, utils,
collects miscellaneous functions that do not fall within the previous scopes. Finally, code concerning ommanalyze is
stored in the analyze module.

5.1 Module io

This module hosts the input file handling logic, such as the precedence of format files (function io.prepare_handler),
and the main container class (io.SystemHandler) that gives access to the components needed to create an OpenMM
System object. Each of those components (io.Topology, io.Positions, io.Velocities, io.BoxVectors, and io.Restart ob-
jects) inherit from io.MultiFormatLoader, which supports the automated load of different formats based on the file
extension, and io.InputContainer, a simple class that supports different attributes with light validation of the proper
data structure.

The custom reporters provided by OMMProtocol are also contained here: SegmentedDCDReporter and ProgressBar-
Reporter. The first allows the generation of DCD trajectories in chunked files to prevent huge file sizes, and the second
converts OpenMM’s StateDataReporter in a more interactive console reporter (only one line dynamically updated for
each protocol stage).

5.2 Module md

The goal of this module is to thread together the different stages of the protocol and run the corresponding simulations
one after another. The main actor in this module is the md.Stage class, which contains all the needed logic to run
a simulation in OpenMM: creation of the System object, application of restraints or constraints, preparation of the
universe conditions such as temperature or pressure, configuration of the platform properties, construction of the
Simulation object, setup of the output reporters. . . Each of these components is encapsulated in cached properties for
maximum performance and ease of use in interactive sessions.

19

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

A helper function, md.run_protocol, takes the options for each stage specified in the input file and builds the needed
Stage objects to execute them one after the other, passing the final state of each stage as the initial state of the next one.
Since each stage must be named uniquely in the input file, the generated output files are meaningfully titled, leading
to easy identification during the analysis.

5.3 Module analyze

The ommanalyze executable provides commands to perform routinary plots in trajectory analysis, like RMSD or
potential energy plots. Currently, it only provides two subcommands: ommanalyze rmsd, which requires the
topology and one or more trajectory files, and outputs an interactive plot with matplotlib and ommanalyze log,
which simply plots the contents of the .log files generated during the trajectory. This module is only a stub that, if
successful, could be further extended with more common analysis procedures thanks to the MDTraj library.

20 Chapter 5. Software architecture

CHAPTER 6

Get help

If you have any questions, please feel free to submit an issue in our Github repository.

21

https://github.com/insilichem/ommprotocol/issues
https://github.com/insilichem/ommprotocol

OMMProtocol Documentation, Release 0.1.13+0.g8a5e9e4.dirty

22 Chapter 6. Get help

CHAPTER 7

Citation

OMMProtocol is scientific software, funded by public research grants (Spanish MINECO’s project
CTQ2014-54071-P, Generalitat de Catalunya’s project 2014SGR989 and research grant 2017FI_B2_00168,
COST Action CM1306). If you make use of Ommprotocol in scientific publications, please cite it. It will help
measure the impact of our research and future funding! A manuscript is in progress and available as a pre-print in
ChemRxiv.

@article{ommprotocol,
author = {Rodríguez-Guerra Pedregal, Jaime and

Alonso-Cotchico, Lur and
Velasco-Carneros, Lorea and
Marechal, Jean-Didier}

title = {OMMProtocol: A Command Line Application to Launch Molecular Dynamics
→˓Simulations with OpenMM},
url = {https://chemrxiv.org/articles/OMMProtocol_A_Command_Line_Application_to_
→˓Launch_Molecular_Dynamics_Simulations_with_OpenMM/7059263/1},
DOI = {10.26434/chemrxiv.7059263.v1}
publisher = {ChemRxiv},
year = {2018},
month = {Sep}
}

23

	Installation & Updates
	Quick usage
	OMMProtocol input files
	OpenMM forcefields
	Software architecture
	Get help
	Citation

